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Abstract

Literate humans can effortlessly interpret tens of thousands of words, even when

the words are sometimes written incorrectly. This phenomenon suggests a flexible

nature of reading that can endure a certain amount of noise. In this study, we in-

vestigated where and when brain responses diverged for conditions where misspelled

words were resolved as real words or not. We used magnetoencephalography (MEG)

to track the cortical activity as the participants read words with different degrees of

misspelling that were perceived to range from real words to complete pseudowords,

as confirmed by their behavioral responses. In particular, we were interested in how

lexical information survives (or not) along the uncertainty spectrum, and how the

corresponding brain activation patterns evolve spatiotemporally. We identified three

brain regions that were notably modulated by misspellings: left ventral occipitotem-

poral cortex (vOT), superior temporal cortex (ST), and precentral cortex (pC). This

suggests that resolving misspelled words into stored concepts involves an interplay be-

tween orthographic, semantic, and phonological processing. Temporally, these regions

showed fairly late and sustained responses selectively to misspelled words. Specifi-

cally, an increasing level of misspelling increased the response in ST from 300 ms after

stimulus onset; a functionally fairly similar but weaker effect was observed in pC.

In vOT, misspelled words were sharply distinguished from real words notably later,

after 700 ms. A linear mixed effects (LME) analysis further showed that pronounced

and long-lasting misspelling effects appeared first in ST and then in pC, with shorter-

lasting activation also observed in vOT. We conclude that reading misspelled words

engages brain areas typically associated with language processing, but in a manner

that cannot be interpreted merely as a rapid feedforward mechanism. Instead, feed-

back interactions likely contribute to the late effects observed during misspelled-word

reading.

1 Introduction

Visual word recognition involves initial visual perception, followed by subsequent ortho-

graphic, phonological, and semantic processing (Grainger, 2008). This recognition pro-

cess is effortlessly completed for familiar words because the perceived visual information

matches the orthography (i.e., spelling) of an entry in the mental lexicon (Martin, Tan,

Newsome, & Vu, 2017). However, when a word is misspelled, it is technically a nonword
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with no entry in the mental lexicon. Yet, we can often still readily identify them even if

the orthography is not perfectly matched (Davis, 2013; Pearson, Barr, Kamil, & Mosen-

thal, 1984). Misspelled words, which are graphemically related to the real words, are not

retained in long-term memory, but still plausibly involve the lexical system, potentially

aiding in the retrieval of analogous words (Almeida & Poeppel, 2013). This reading flexi-

bility effect has its counterpart in the “Ganong effect” in speech perception where listeners

tend to identify an ambiguous sound as part of a real word instead of a nonword (Gow Jr,

Segawa, Ahlfors, & Lin, 2008).

In masked priming, a misspelled word created by transposing two medial letters (TL)

or replacing a medial letter by a different one (RL) results in a strong priming effect on

lexical decision responses to a subsequent correctly spelled target word (Forster, Davis,

Schoknecht, & Carter, 1987). This priming effect is in line with the repetition account,

which states that misspelled words access the lexical entries for the correctly spelled

ones (Forster et al., 1987). However, when word forms are sufficiently distorted they

become unrecognizable. As the number of replaced letters in the primes increases, prim-

ing effects decrease and eventually vanish (Grainger, 2008; Lupker & Davis, 2009). The

absence of priming effects indicates that the severely misspelled-word primes fail to access

the lexical entries of correctly spelled-word targets. Evidently, there is no strict dichotomy

between words and nonwords, but rather a spectrum, with misspelled words constituting a

gray area (Chen, Davis, Pulvermüller, & Hauk, 2015; Hauk, Pulvermüller, Ford, Marslen-

Wilson, & Davis, 2009). While the behavioral results provide a measurement at the end of

target word recognition, it remains to be clarified how the recognition of misspelled words

proceeds in our brain in space and time.

When we encounter unfamiliar words of our native language, an everyday phenomenon

during language development is that those words initially appear as pronounceable non-

words, i.e., pseudowords. Although devoid of meaning, pseudowords are postulated to elicit

a broad search in the mental lexicon (Grainger & Jacobs, 1996). In this sense, reading

pseudowords might serve as a good entry point for conceptualizing the processing of mis-

spelled words (Grainger & Jacobs, 1996). Functional magnetic resonance imaging (fMRI)

studies have compared neural activation patterns evoked by word and pseudoword reading.

Stronger activation to pseudowords than real words has often been reported, particularly

in the left ventral occipito-temporal cortex (vOT) and left frontal operculum(Carreiras,

Mechelli, Estévez, & Price, 2007; Cattinelli, Borghese, Gallucci, & Paulesu, 2013; Fiebach,

Friederici, Müller, & Von Cramon, 2002; Heim et al., 2005; Kronbichler et al., 2007; Mc-

Norgan, Chabal, O’Young, Lukic, & Booth, 2015; Taylor, Rastle, & Davis, 2013). These

findings may provide clues about where the misspelled word recognition occurs.

EEG has been used to investigate indirectly the time course of processing misspelled

words by applying the masked priming paradigm, similar to previous behavioral stud-

ies. In those EEG studies, the misspelled words, while orthographically similar to words,

were not always pronounceable. The priming effects were mostly reflected in the event-

related potential (ERP) components N250 and N400, negative-going responses that reach

the maximum at around 250 ms and 400 ms post stimulus onset, respectively. Specifi-

cally, a nonword prime with a replaced letter that was visually dissimilar to the target

word (e.g., dentgst-DENTIST) resulted in stronger N250 and N400 responses to the tar-
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get word than when the replaced letter was visually similar to the target (e.g., dentjst-

DENTIST) (Gutiérrez-Sigut, Marcet, & Perea, 2019). Enhancement of N250 and N400

for the target words was also observed with primes that contained double replacement

(e.g., shgue-SHAPE) compared to primes that contained transposed letters (e.g., shpae-

SHAPE) (Ktori, Kingma, Hannagan, Holcomb, & Grainger, 2014; Meade, Grainger, &

Holcomb, 2021; Meade, Grainger, Midgley, Holcomb, & Emmorey, 2020; Meade, Mah-

nich, Holcomb, & Grainger, 2021). The different types of misspelled words used as primes

thus facilitated the processing of word targets to a varying degree; however, in these mask-

ing studies, the primary focus was on word targets rather than on the misspelled words

themselves. In contrast, during single-word reading, only a stronger N400 response was

reported for RL misspelled (and pronounceable) words compared to TL pseudowords and

real words (Vergara-Mart́ınez, Perea, Gómez, & Swaab, 2013). Effects related to N250

thus seem to be specifically related to the masked priming paradigm. This suggests that

N250 is likely linked to the sublexical orthographic overlap between prime and target, as it

shows a gradient modulated by their orthographic similarity (Gutiérrez-Sigut et al., 2019).

Presumably, the later stages of processing, including the N400 component, are of primary

interest when studying cortical dynamics of recognition of isolated misspelled words. N400

is thought to reflect lexical and semantic processing at the whole-word level (Kutas & Fed-

ermeier, 2011). It may indicate the amount of effort required to translate a word form into

its corresponding semantic concept (Holcomb, Grainger, & O’rourke, 2002). According to

the latest predictive coding model, the heightened N400 response observed for pseudowords

reflects an increased lexico-semantic prediction error Eddine, Brothers, Wang, Spratling,

and Kuperberg (2024). It remains unclear whether this framework can be applied to

understand the neural dynamics involved in reading misspelled words.

Magnetoencephalography (MEG) has become an increasingly prevalent method to

study language function in the brain due to its combined temporal and spatial sensi-

tivity (Salmelin, Kujala, & Liljeström, 2019). MEG has revealed a salient spatiotemporal

process for single-word reading that proceeds from analysis of visual features at around

100 ms in the occipital cortex, to letter-string processing at around 150 ms in the left

occipitotemporal cortex, and ultimately to lexical and semantic processing at around 200–

800 ms in the left superior temporal cortex (Tarkiainen, Helenius, Hansen, Cornelissen, &

Salmelin, 1999; Vartiainen, Liljeström, Koskinen, Renvall, & Salmelin, 2011). The N400

(or N400m for MEG) response in the left superior temporal cortex is stronger and longer

lasting for pseudowords than real words (Vartiainen et al., 2011; Wydell, Vuorinen, He-

lenius, & Salmelin, 2003). However, no effects were observed in the left occipitotemporal

cortex, despite its sensitivity to pseudowords in previous fMRI studies (Woolnough et al.,

2022, 2021). This discrepancy relights the debate regarding the functional role of the left

occipitotemporal cortex—whether it primarily supports prelexical processing (Baker et

al., 2007; Dehaene, Le Clec’H, Poline, Le Bihan, & Cohen, 2002; Glezer, Jiang, & Riesen-

huber, 2009; Tarkiainen et al., 1999; Vartiainen et al., 2011) or engages in top-down lexical

or phonological information (Dehaene & Cohen, 2011; Price & Devlin, 2011; Woolnough

et al., 2021). The modulation of cortical response by misspelled words remains to be

investigated, which may offer new insights into this debate.

The present study aimed to determine whether these previously described neural ef-
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fects of single-word reading serve as indicators for misspelled word resolution and whether

they might also be linked to the degree of word-likeness along the spectrum from word

to pseudoword. Starting from base words, we parametrically replaced an increasing num-

ber of letters while keeping the misspelled words pronounceable. In previous behavioral

studies, letter replacement has been used to effectively manipulate misspelling. This ap-

proach provided a continuum of misspelled words, ranging from real words to complete

pseudowords. MEG and concurrent behavioral data were recorded in a visual word recog-

nition paradigm.

2 Materials and Methods

2.1 Participants

Twenty-five volunteers participated in this study (19 females and 6 males; age range 19–40

years; mean age 24.4 years and SD 5.5). All participants were healthy, right-handed native

Finnish speakers, without history of language disorders or problems in language develop-

ment, or psychiatric, neurological or somatic disorders. A written informed consent was

obtained from all participants, in accordance with the prior approval of the Aalto Univer-

sity Research Ethics Committee. Data of two subjects were discarded from the analysis:

one due to excessive noise from head movements, and the other due to non-compliance

with the task as evidenced by both self-report and behavioral results. Consequently, data

from 23 participants were retained for analysis in this study.

2.2 Stimuli

Four stimulus categories, in increasing order of orthographic dissimilarity, were real Finnish

words (RW), and three levels of misspelled words constructed by replacing 1, 2, or 3

internal letters (vowel with vowel and consonant with consonant) of the original base words,

respectively (RL1, RL2 and RL3) (Figure 1b). In this manner, the stimuli were intended

to exhibit graded levels of recognition difficulty. Each category contained 150 stimuli, and

each stimulus was derived from a different base word to avoid possible word-form priming

effects between stimuli. All 600 base words were frequent Finnish nouns with lengths of 7-

8 letters, selected from a large Finnish Internet corpus (Kanerva, Luotolahti, Laippala, &

Ginter, 2014). The base words in the four categories did not differ significantly in lemma

frequency (one-way ANOVA test, p = .81). Table 1 summarizes the psycholinguistic

characteristics of each stimulus category.

All categories of misspelled words were readable pseudowords, which tend to en-

gage subjects in lexical inference (and implicitly more than for nonwords (Evans, Lam-

bon Ralph, & Woollams, 2012; Schuster, Hawelka, Richlan, Ludersdorfer, & Hutzler,

2015)). The pronounceability was controlled according to Finnish phonotactics (Suomi,

Toivanen, & Ylitalo, 2009) to conform to Finnish orthographic rules. Using letter replace-

ment, it was simultaneously feasible to parametrically vary the orthographic dissimilarity

(i.e., misspelling) without changing the stimulus length and retain the misspelled words

pronounceable (i.e., pseudoword). This is not always possible for other letter manipulation

approaches such as letter transpose, deletion, or addition.
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To prevent lexical competitor effects, the generated pseudoword was ensured to be

closest orthographically to its corresponding base word, i.e., any other words in the corpus

should be farther away from the base word based on Damerau–Levenshtein distance (Dam-

erau, 1964; Levenshtein, 1965). However, this requirement could not be met for RL3 as

there were always other words with a Damerau–Levenshtein distance of 3 from the base

word. In this sense, RL3 has no unique map to a real word, thereby remaining unresolved

for lexical retrieval.

Table 1: Summary of the psycholinguistic characteristics for each stimulus category (mean±std).

Category #Replaced letters Length Frequency (log)a Visual distance (pixel)b Bigram frequencyc

RW 0 7.28 ± 0.45 11.51 ± 0.94 0 66168.83 ± 20861.75
RL1 1 7.60 ± 0.49 11.55 ± 0.97 3555.73 ± 377.07 54467.24 ± 23649.89
RL2 2 7.64 ± 0.48 11.48 ± 0.92 4938.47 ± 419.42 39156.36 ± 16258.14
RL3 3 7.40 ± 0.49 11.52 ± 1.03 6123.21 ± 441.38 41067.07 ± 18433.07

a Frequency: Log lemma frequency value of corresponding base word.
b Visual distance: Euclidean distance between the corresponding pixels of the two rendered images of stimulus and its
base word.

c Bigram frequency: averaged number of times the consecutive pairs of letters within a stimulus appear in the used corpus.

2.3 Experimental procedure

Stimuli were presented one by one in a pseudorandom order using Presentation software

(Neurobehavioral Systems Inc., USA). Participants were asked to read the stimuli silently

and attempt to retrieve their corresponding base words. We chose a silent reading task,

instead of a lexical/phonological decision task, since we aimed to simulate natural reading

where we typically do not make any decisions but try to understand the content while

reading. In each trial, a fixation cross was presented for 800-1200 ms on the screen with

a gray background. Next, a stimulus was presented in black capital letters in 36-point

Courier New font for 600 ms (visual angle ≈ 0.61◦), followed by a 500-ms blank gray

background.

To keep the participants engaged, 10 % of the trials in each category were designated

as catch trials, during which a stimulus was followed by a sentence missing the first word.

Participants were instructed to determine whether the base word inferred from the pre-

ceding stimulus could reasonably serve as the missing first word of the sentence (Hultén

et al., 2021). For example, a stimulus “MYSTYGY”, an RL2 from the base word of

“MYSTERY”, might be followed by “stimulates the imagination” (for the actual Finnish-

language stimuli: MYSTEYGI (MYSTEERI) kiehtoo mielikuvitusta). In this case the

answer would be “yes” even though the stimulus was not a correctly-written word. Par-

ticipants had 3 seconds after the sentence onset to respond with a button press (Figure 1a).

The responses, including reaction time and accuracy, were obtained from catch trials and

used as behavioral data; the corresponding MEG trials were excluded from further analy-

sis as, compared to the other trials, they contained additional stimuli and neural activity.

To minimize fatigue, subjects were given five self-paced breaks during the experiment.

After the experiment, we asked participants to complete a brief questionnaire to eval-

uate how they engaged in this experiment. During this questionnaire, they wrote down

self-reported feedback on a number of questions: fatigue, stimulus pronounceability, speed

of stimulus presentation, percentages of recognizable and unrecognizable stimuli, strate-
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gies used to recognize misspelled words, and additional comments. The results from the

questionnaire were not used in any analysis.

2.4 Data acquisition

MEG data were measured at the Aalto NeuroImaging (ANI) MEG Core with a MEGIN

TRIUX neo system (MEGIN Oy, Helsinki, Finland). The system is equipped with 102

triplet sensors, with each triplet containing two orthogonal planar gradiometers and one

magnetometer. Participants were seated in the MEG device in a magnetically shielded

room (Imedco AG, Switzerland).The data was low-pass filtered at 330 Hz and sampled

at 1000 Hz during recording. Eye movements and blinks were captured by two pairs

of electrooculogram (EOG) electrodes positioned horizontally and vertically around the

eyes, respectively. The head position was continuously monitored using 5 head position

indicator (HPI) coils attached on the left, middle and right forehead and mastoids. Three

anatomical landmarks (the left and right preauricular points and the nasion) and several

dozens of extra points around the head surface, along with the HPI coils positions, were

digitized for subsequent co-registration of each individual participant’s MEG data with

the structural magnetic resonance image (MRI) of their brain.

Structural MRIs were scanned at the ANI Advanced Magnetic Imaging Centre after

the MEG session using a 3 T MRI scanner (Magnetom Skyra, Siemens) with a 32-channel

head coil and T1-weighted MPRAGE and T2-weighted SPC SAG sequences.

2.5 MEG preprocessing

MEG data were analyzed using the MNE-Python software package (Gramfort et al., 2013).

MEG sensors with evident noisy signals were detected visually and excluded from analysis.

Spatiotemporal signal space separation (tSSS) was applied to remove external environmen-

tal noise and compensate for head movements (Taulu & Simola, 2006). Thereafter, the

data was band-pass filtered at 0.1–40 Hz. Artifacts associated with eye movements, eye

blinks and heartbeats were removed using independent component analysis (ICA). ICA

decomposition was estimated on the data additionally high-pass filtered at 1 Hz to ap-

proach the ICA’s stationarity assumption (Jas et al., 2018). Artifact-related components

initially automatically detected, and following a visual inspection were excluded from the

data. Thereafter, we extracted epochs from -200 to 1100 ms with respect to each stimulus

presentation, including a -200–0 ms pre-stimulus baseline. Epochs with excessive peak-

to-peak signal amplitudes were removed, with the cutoff threshold of 3000 fT/cm for the

gradiometer sensors and 4000 T for the magnetometer sensors. We then averaged the

epochs separately per each condition (minimum 130 epochs).

2.6 Analysis of MEG evoked activity

To obtain a preliminary overview of the observed data, we aggregated grand-averaged areal

evoked-responses from 204 gradiometers across eight regions: bilateral frontal, temporal,

parietal, and occipital areas. Each time course was characterized by calculating the root

mean square of the amplitude across areal sensors. To ensure consistency in relative sensor

locations across subjects, head positions were aligned by transforming head positions of
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all subjects into a reference position, based on an participant with an average brain size

and head-helmet distance, using Elekta Neuromag MaxFilter software.

We estimated source-level evoked activity using MNE-Python (Gramfort et al., 2013).

Participants’ cortical surfaces were first reconstructed from their structural T1 MP-RAGE

and T2 SPC SAG images using the Freesurfer software package (Dale, Fischl, & Sereno,

1999; Fischl, Liu, & Dale, 2001; Fischl, Sereno, & Dale, 1999). The minimum-norm es-

timation method (Hämäläinen & Sarvas, 1989) was then used to estimate the sources of

the averaged evoked responses in the four conditions on each individual’s reconstructed

cortical surface. A boundary-element model (BEM) was created by stripping the outer

skull and scalp from the pial surface using the watershed algorithm in FreeSurfer. A

single-layer BEM with an icosahedral mesh of 2,562 vertices per hemisphere was used as

a head conductor model in the forward computation. To calculate the inverse operator in

each participant, we applied a loose constraint parameter (0.2) to the relative weighting

of tangential versus radial current dipole orientations, and a depth weighting parameter

(0.8) to to increase the contributions of deeper sources. We constructed and regularized

an empirical noise-covariance matrix using the baseline interval of all epochs and a regu-

larization factor of 0.1 for noise-normalized dynamic statistical parametric maps (dSPM;

Dale et al., 2000).

For group-level analyses, the individual source estimates were morphed to a standard

template brain provided by FreeSurfer (fsaverage).

2.7 Regions of interest

We used a custom-made parcellation including 69 and 70 brain regions for left and right

hemispheres, respectively, based on the Destrieux Atlas for fsaverage (Ala-Salomäki, Ku-

jala, Liljeström, & Salmelin, 2021). We selected ROIs that were found to be highly and

significantly sensitive to misspelling in the present study and also located within canonical

language areas identified in prior neuroimaging studies of word reading (Kaestner et al.,

2021, 2022; Price & Devlin, 2011; Wydell et al., 2003): left ventral occipitotemporal cortex

(vOT), superior temporal cortex (ST; middle part), and precentral cortex (pC; inferior

part), as shown in Figure 5b. For completeness, we also examined task effects in their

right-hemisphere counterparts.

2.8 Statistical testing and modeling

The behavioral results, including accuracy and reaction time, were evaluated with one-way

repeated measures analysis of variance (ANOVA) to examine differences in task perfor-

mance among conditions. Subsequently, post-hoc pairwise t-tests were used to identify how

the behavioral performance varied as the levels of misspelling increased. The obtained p

values were corrected using Benjamini–Hochberg false detection rate (FDR) method.

We conducted a one-way repeated measures ANOVA test at the sensor level to obtain

the temporal regions that showed significant misspelling sensitivity, which was the basis

for selecting time windows of interest. This test was applied on 30-ms, non-overlapping

windows. Significance was accepted at a threshold of p < 0.01. For the source-level

analysis of MEG data across conditions, we employed cluster-based permutation tests to

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2025. ; https://doi.org/10.1101/2025.01.05.631357doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.05.631357
http://creativecommons.org/licenses/by-nc-nd/4.0/


determine significant differences between real and misspelled words across participants.

Since this test is not capable of inferring the (spatial or temporal) extents or locations of

effects (Sassenhagen & Draschkow, 2019), we performed the test in two ways: First, for

addressing the temporal effects we applied the test to the whole cortex in 200-ms time

windows. Second, to examine significantly misspelling-sensitive regions, we applied the

test to the whole range of time windows between all pairs of conditions in each parcel. In

both cases, we used 1024 permutations and a cluster-forming threshold of t > 3 based on

a one-sample t-test. The resulting p-values were then corrected for multiple comparisons

(across parcels or time), using the Benjamini–Hochberg FDR method. For the analysis

of statistical differences between the activation time courses of real and misspelled words

within each ROI, we also used a cluster-based permutation test. All parameters were kept

the same except for the cluster-forming threshold, which was lowered to t > 1.5 based on a

one-sample t-test to better capture subtle differences. To examine how activation strengths

in each ROI differed across conditions in different time windows, we performed one-way

repeated measures ANOVA in 200-ms time windows, followed by post-hoc pairwise t-tests

with Benjamini–Hochberg FDR corrected p values.

To further examine the nature of the relationship between brain activation and mis-

spelling levels, we modeled the evoked activity in each ROI using linear mixed effects

(LME) analysis (Pinheiro & Bates, 2000). In the LME model, participants were modeled

as random effects (random intercepts, fixed slopes), and the fixed effect was the number of

replaced letters. We additionally examined the fixed effects of visual distance (visual) and

bigram frequency difference between stimulus and its base word (sublexical), as well as

stimulus recognizability (lexical). Visual distance was measured by the Euclidean distance

between the corresponding pixels of the two rendered images of stimulus and its base word.

Recognizability was estimated by the accuracy for each condition obtained from behav-

ioral data. Visual distance and bigram frequency differences were converted into discrete

predictor variables by dividing them into four ordinal bins. These bins were designed to

ensure that the number of epochs in each bin was nearly equal and sufficient for each

participant, approximating the number of epochs in each level of misspelling (∼100–150

epochs per bin depending on how the epochs are distributed in the four bins). The values

within each bin were then averaged, and the resulting mean predictors for the four bins

were scaled using min-max normalization. An LME model was employed to assess the

effects of these predictors on the time course of the evoked responses using 20 ms windows

without overlap. The p-values obtained from LME at each time point were FDR corrected,

with the threshold at p < 0.01 for an effect to be considered significant.

3 Results

3.1 Effect of misspelling on semantic retrieval

To assess how different degrees of misspelling affect semantic retrieval, we examined the

behavioral task performance during catch trials. Task accuracy showed a decreasing trend

with an increasing number of replaced letters: RW (mean±SD 86.4±16.7%), RL1 (85.2±
14.6%), RL2 (67.8 ± 16.0%), and RL3 (49.9 ± 13.0%) (Figure 2). The accuracy dropped

significantly from RL1 to RL3 (one-way repeated measures ANOVA: F (3, 66) = 60.23,
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Figure 1: a, Experimental design. Of all trials, 90% constituted regular trials, included in
the MEG data analysis, while the remaining 10% were catch trials. During regular trials,
participants engaged in silent reading of the presented stimuli, whereas in catch trials, par-
ticipants were required to make a behavioral response on sentence validity (“MYSTYGY
fascinates the imagination”). b, Example stimuli from each of the four stimulus cate-
gories, along with their corresponding base words enclosed in parentheses (ARTISTI =
artist, MYYMÄLÄ = store, VIRASTO = bureau, KUUNTELU = listening).
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Figure 2: Barplots of task accuracy and reaction time for the four stimulus categories.
Each black dot indicates an individual participant’s result(n = 23).

p < .001; pairwise t-tests across RL1, RL2 and RL3: t(22) = 5.81 to 12.00, p < .001), with

RL3 being not significantly above the chance level accuracy of 50% (t(22) = −.05, p = .52).

However, no significant difference was observed between RW and RL1 (t(22) = −.31,

p = .75). The reaction times increased with an increasing number of replaced letters: RW

(1220 ± 226 ms), RL1 (1271 ± 262 ms), RL2 (1431 ± 220 ms), and RL3 (1502 ± 341 ms)

(F (3, 66) = 15.49, p < .001; pairwise t-tests across RW, RL1 and RL2: t(22) = −7.90 to

−2.21, p < .001 to .05), plateauing at 2-letter replacement (RL2 vs RL3: t(22) = −1.25,

p = .22).

3.2 Spatiotemporal differences between real and misspelled words in

evoked activity

To determine when misspelling sensitivity was reflected in neural responses, we analyzed

the grand-averaged areal evoked time courses at the sensor level. As illustrated in Figure 3,

we observed that misspelling sensitivity emerged after ∼300 ms in most areas, where
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Figure 3: Grand-averaged areal time course of MEG evoked responses across gradiometer
sensors located over the frontal (first row), temporal (second row), parietal (third row), and
occipital (fourth row) cortex in the left (left column) and right hemisphere (right column).
Black bars under each plot indicate regions of significance between all conditions (one-way
repeated measures ANOVA, p < 0.01).

misspelled words elicited stronger and more sustained responses than real words. While

the initial sensor-level analysis suggested a significant difference between conditions also

at ∼200–300 ms in the right occipital area, this effect was not confirmed in the source-level

analysis (Figure 3, bottom right). Therefore, in the following, we focus on time windows

>300 ms.

To investigate the temporally evolving map of misspelling effects at the source level,

we contrasted group-level source activation patterns between the three levels of misspelled

words and real words across four time windows: 300–500 ms, 500–700 ms, 700–900 ms, and

900–1100 ms (Figure 4a). In the 300–500 ms time window, RL3 elicited stronger activation

than RW in the left ST and pC (Figure 4a, row 1). From 500 ms onwards, RL1 and RL2

also produced stronger activity than RW in approximately the same areas, and the right

hemisphere was additionally highlighted (Figure 4a, rows 2–3). Furthermore, the left vOT

cortex that showed an early response to all stimuli (<200 ms; see Supplementary Figure

1 for the group-level evoked responses for each condition separately) was more active for

misspelled words than RW from 500 ms onwards. These effects, though diminished over

time, sustained until 1100 ms, particularly salient in the left hemisphere.

To examine where in the brain was sensitive to misspellings, we contrasted activation

strengths within cortical parcels during the full time window of 300–1100 ms. Signifi-

cant differences between misspelled and real words were revealed extensively around the

perisylvian language regions, predominantly in the left hemisphere (Figure 4b). An in-
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Figure 4: Cortical activation evoked by misspelled words vs. real words during 300–1100
ms. a, Group-level source estimates (MNE-dSPM) contrasting RWs and misspelled words
in four selected time windows. White borders indicate clusters with p < 0.05 in a one-
tailed cluster-based permutation test. b, Statistical tests on the evoked activity during
300–1100 ms between all pairs of conditions, with FDR-corrected p-values (dark blue,
p < 0.001; mid blue, p < 0.01, light blue, p < 0.05, white, n.s.).

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2025. ; https://doi.org/10.1101/2025.01.05.631357doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.05.631357
http://creativecommons.org/licenses/by-nc-nd/4.0/


creasing number of parcels with a significant effect was observed with increasing levels

of misspellings, suggesting more robust neural effects. However, a far smaller set of cor-

tical regions showed significant sensitivity between the increasing levels of misspellings.

Nonetheless, stronger activation in left ST and pC was retained for almost all pairs of

misspelled words, except that left pC appeared in the contrast between RL1 and RL2. No

significant difference between levels of misspelling was found in vOT.

3.3 Time courses of activation in the ROIs

To characterize the timing of distinctions between stimulus classes, we focused on three

left-hemisphere ROIs: vOT, ST, and pC(Figure 5a). In all ROIs, the activation evoked by

the misspelled words differed significantly from that evoked by real words from about 500

ms onwards. We further divided the time courses of activation into discrete time windows

and performed pairwise comparisons between conditions (Figure 5b).

The time courses in the vOT exhibited pronounced sensitivity to misspelled words

from about 550 ms onwards. Pairwise comparisons revealed that from 700 ms onwards,

vOT differentiated all misspelled word types similarly from the real words. Additionally,

vOT seemed to show marginally more activation for RL3 than RW at 300-500 ms and for

RL1 than RW at 500-700 ms. More anteriorly, ST showed a graded response to increasing

misspellings from about 300 ms onwards, a pattern mirrored in pC from about 400 ms

onwards. In both ST and pC, the observed activation clusters for RL3 (bars below the

time courses) lasted longer and started earlier than those for RL2 and RL1. The pair-

wise test confirmed and complemented the qualitative observations in ST: RL3 showed

task sensitivity in the 300-500 ms time window, thus earlier than the other conditions.

Subsequently, RL1 and RL2 also exhibited misspelling effects until the last time window,

at which point there was no significant difference between RL1 and RW. In pC, the mis-

spelling effects differed slightly from those in ST and were not as robust. The analysis

of corresponding ROIs in the right hemisphere showed notable effects between misspelled

and real words primarily in the ST and pC and only few effects in the vOT. Differences

between misspelled words were only detectable in the late 900-1100 ms window in the ST

(Supplementary Figure 2).

To quantify the relative sensitivity of each ROI to misspelling, we performed a linear

mixed effects (LME) analysis with fixed effects of the number of replaced letters (0–3) at

each time point during the 0-1100 ms period (Figure 6a). The model over time showed

a strong and long-lasting effect that emerged late in the ST at around 350 ms, with a

subsequent weaker effect in the pC. A late effect was also observed more posteriorly in the

vOT, peaking at around 850 ms.

While the number of manipulated letters was the focus of our study, it is not the only

variable influencing the activation patterns of misspelled word reading. Therefore, we also

generated LME models to evaluate the effects of additional parameters closely related to

misspelling: visual distance, the difference of bigram frequency, and recognizability (Fig-

ure 6b-d). We found significant effects of visual distance(Figure 6b), which paralleled

those of the number of replaced letters, indicating a correlation between the two variables

(Pearson correlation, r(538) = 0.95, p < 0.001). The pattern of the effects for recogniz-

ability appeared similar to that for the number of replaced letters, but no effect was found
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Figure 5: a, Regions of interest (ROIs) and averaged evoked responses of each category
within the ROIs. Solid bars under the plots indicate the time clusters with p < 0.05 based
on cluster-based permutation tests between misspelled words and real words. b, Results
of one-way repeated measures ANOVA and pairwise t-test (FDR corrected) between con-
ditions in different time windows. Asterisks above each heatmap indicate the significance
level obtained from ANOVA (***, p < 0.001; **, p < 0.01; *, p < 0.05).
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Figure 6: Time courses (LME, β ± s.e.) of misspelling sensitivity in terms of number of
replaced letters (a), visual distance (b), bigram frequency difference (c) and recognizability
(d). Solid bars indicate time regions of significant effect (p < 0.01).

in the vOT(Figure 6c). Sensitivity to the difference in bigram frequency was observed

solely in the pC (Figure 6d).

4 Discussion

We aimed to explore where and when the brain activity of skilled readers was modified

by the possibility of comprehending misspelled words. Thus, we investigated how increas-

ing degrees of misspelling affect meaning retrieval and cortical dynamics by recording

behavioral data and MEG during a silent single-word reading paradigm. The stimuli of

misspelled words were perceived to range from real words to complete pseudowords. Our

work reveals that left vOT shows selectivity to misspelled words vs. real words, while

left ST and pC also differentiate between degrees of misspelling. Notably, these effects

occurred late (> 300 ms after stimulus onset) and sustained.

4.1 Semantic retrieval can survive misspelling

Behavioral data indicated that semantic information could be retrieved to varying degrees

from the three categories of misspelled words. RL1 showed no significant differences in

accuracy compared to RW, while for RL3 the accuracy plummeted, and RL2 fell between

RL1 and RL3, indicating the words had become ambiguous. Therefore, RL1, RL2, and
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RL3 may be regarded as recognizable, ambiguous, and unrecognizable misspelled words,

respectively. The reduced accuracy with an increasing number of misspelled letters was

accompanied by a longer reaction time, likely due to deeper rumination required to search

for the intended words in the mental lexicon under more challenging conditions. Unlike

the masked priming paradigm used in previous behavioral studies of misspelling (Forster

et al., 1987; Grainger, 2008; Lupker & Davis, 2009), the present paradigm provided a

direct estimate of how well the meaning of misspelled words could be retrieved along the

word–pseudoword spectrum.

4.2 Left vOT, ST and pC are central cortical regions for disambiguating

misspelled words

Salient misspelling effects were observed in left vOT, ST, and pC, which are all regions

belonging to the established language network. Hence, it appears that disambiguating

misspelled words is handled by this network as well. Broadly, left vOT differentiated the

dichotomy of misspelled vs. real words at a coarse level, while left ST and pC distinguished

varying levels of misspelling with greater precision.

Left vOT has been linked to prelexical neural processing of letter strings in electro-

physiological (MEG, EEG) (Baker et al., 2007; Glezer et al., 2009; Tarkiainen et al., 1999;

Vartiainen et al., 2011) and fMRI recordings (Dehaene & Cohen, 2007; Dehaene et al.,

2002). We observed notable selectivity for misspelled words in left vOT starting only from

500 ms, with higher activation for pseudowords than words (RW<RL3), but no distinc-

tion between degrees of misspelling (RL1=RL2=RL3). In MEG studies, left vOT shows a

response peaking at around 150–200 ms that is sensitive to letter strings, in general, and

thought to reflect pre-lexical processing Tarkiainen et al. (1999). Our results support this

view: left vOT showed no early effects on recognizability, which supports the notion that

during the first 200 ms, vOT may be involved in processing the visual shape of letters and

letter strings, but not in detecting complete word-like forms. However, it is important to

note that semantic processing may begin around 250 ms, or even earlier Amsel, Urbach,

and Kutas (2013); Hauk, Coutout, Holden, and Chen (2012). This suggests that vOT

likely acts as an interface between orthographic and lexico-semantic information. In EEG

studies, N250 peaking at around 200–300 ms was found to be sensitive to misspellings in

masked priming studies (Gutiérrez-Sigut et al., 2019; Ktori et al., 2014; Meade, Grainger,

& Holcomb, 2021; Meade et al., 2020; Meade, Mahnich, et al., 2021). We did not find

such an effect in our results. This is probably because in the aforementioned EEG stud-

ies, it was the prime that was the misspelled word, but the response to the target word

(correctly spelled) was analyzed. The fact that we do not see an N250 effect when we

study misspelled words in isolation, in line with a previous EEG study using isolated

words (Vergara-Mart́ınez et al., 2013), suggests that during the masked priming studies,

the resolution of the misspelled prime had already occurred before the onset of the target

word. However, fMRI studies do show involvement of vOT in the resolution of misspelled

words (Carreiras et al., 2007; Cattinelli et al., 2013; Fiebach et al., 2002; Heim et al., 2005;

Kronbichler et al., 2007; McNorgan et al., 2015), suggesting that they may have picked up

the late effect (RL>RW after 500 ms) we observed in this study.

While vOT showed no distinction between RL1 and RL2, a more refined distinction
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between words, misspelled words and pseudowords emerged in left ST and pC. Previous

MEG studies have typically linked ST activation in the N400 time window, with lexical-

semantic processing during word reading (Helenius, Salmelin, Service, & Connolly, 1998;

Salmelin, Schnitzler, Schmitz, & Freund, 2000; Van Petten & Luka, 2006). In studies using

(correctly spelled) written words, the activity in ST has been found to be modulated by

factors such as task (Chen, Davis, Pulvermüller, & Hauk, 2013), word frequency (Simos et

al., 2009), and context (Helenius et al., 1998). In addition, this modulation also extends

to word-likeness, with stronger activation for pseudowords than real words (Mainy et al.,

2008; Vartiainen et al., 2011; Wydell et al., 2003). In our results, the initial stages of

the typical N400 window (300–500 ms) only showed a distinction between pseudowords

(RL3) and real words (RW=RL1=RL2) but, thereafter (∼500 ms onward), left ST became

sensitive to degrees of misspellings (RW<RL1=RL2<RL3). This finding was in line with

earlier MEG observations on pseudowords compared to real words (Mainy et al., 2008;

Wydell et al., 2003). However, the sensitivity to RL1 emerged later than that in a pre-

vious EEG study reporting stronger amplitudes for RL1 than RW in the N400 window

already (Vergara-Mart́ınez et al., 2013).

Activation patterns in left pC replicated and extended previous fMRI studies that have

demonstrated a preference for pseudowords in left frontal operculum, which comprises the

inferior portion of left pC (Carreiras et al., 2007; Cattinelli et al., 2013; Fiebach et al.,

2002; Heim et al., 2005; Konstantopoulos & Giakoumettis, 2023; Kronbichler et al., 2007;

McNorgan et al., 2015). pC has been proposed to be engaged in articulatory phonological

processing (Tourville & Guenther, 2011). For example, pC has demonstrated selectivity

to lexicality in a study of reading aloud (Woolnough et al., 2022). Additionally, Chen

et al. (2013) found more activation in pC for silent reading compared to lexical deci-

sion, indicating that silent reading could involve covert articulation. Several silent reading

studies have suggested that pC may contribute to the grapheme-to-phoneme conversion

process (Kaestner et al., 2021, 2022). The triangle model states that skilled readers can

employ two “routes” for recognizing words: For common words, the visual shape is imme-

diately recognized and the appropriate lexical item is activated. For complex or uncommon

words, there is a slower phonological route where letters/syllables are mentally sounded out

before activation of candidate lexical items (Jobard, Crivello, & Tzourio-Mazoyer, 2003).

The heightened involvement of pC during processing of misspelled words may, therefore,

indicate that the phonological route is being employed when faced with misspelled words.

This interpretation is further supported by the observation that pC demonstrated an ex-

clusive effect of bigram frequency (Figure 6d). It is worth noting that pC does not typically

appear as a notably active cortical area in electrophysiological studies of silent single-word

reading. The large proportion of misspelled words in the present MEG study may have

enhanced phonological processing of all stimuli and, thereby, highlighted the role of pC.

4.3 The process for disambiguating misspelled words is late and sus-

tained

Overall, our study shows that when words are presented in isolation, the effect of mis-

spellings only manifests late into the time course of the evoked response, starting from

the N400 window and extending for a prolonged time after. This suggests that whatever
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process is responsible for the resolution of the misspellings, it happens after the initial

activation of candidates in the lexicon.

We could be seeing the effects of increased lexico-semantic prediction error, as sug-

gested by the latest predictive coding model of the N400 (Eddine et al., 2024). According

to this theory, the bottom-up visual input activates multiple lexical candidates that are or-

thographically similar, which are then refined through a top-down prediction process that

reconciles the activated lexical items with the original input. When a word is correctly

spelled (RW), this reconciliation can happen quickly and unambiguously, as there is only

a single lexical item that perfectly matches the input. However, in the case of misspelled

words and pseudowords, the input can never be fully reconciled with the activated lexical

items, which shows as a sustained prediction error. This may also explain why, in vOT,

we first see a distinction between pseudowords (RL3) and correctly spelled words (RW),

and only later a distinction between degrees of misspellings (RL1 and RL2 versus RW)

(Figure 5b). If we assume that RW, RL1 and RL2 initially activate the same lexical items,

while RL3 activates a wider selection of items, RW/R1/R2 would initially produce roughly

the same amount of prediction error, while RL3 produces more.

Our results indicate that the initial buildup of lexico-semantic activation followed by

its gradual decay is a process occurring within the language network, with special roles

for vOT, ST and pC. The particularly late effect in vOT (after 500 ms), an area typically

associated with “low-level” pre-lexical processing, points to an anterior-to-posterior spread

of misspelling information, potentially in a top-down manner from left ST/pC to vOT

(Figure 6). In this manner, the reading of misspelled words seems to align with predictive

coding theory (Friston, 2010). Specifcally, the comparable activation strengths in left vOT

for all misspelled conditions (RL1 = RL2 = RL3 > RW) suggest uniform prediction errors

at the lexico-semantic level, where the orthographic representations fail to match any

lexical entry equally for all levels of misspelled words (Price & Devlin, 2011; Woolnough

et al., 2021). However, the activation strengths are graded in left ST and pC, reflecting

less prediction errors for recognizable misspelled words than unrecognizable ones based on

top-down predictions from prior knowledges.

This result contrasts with the rapid feedforward model of word recognition, which is

typically completed within 500 ms (Pammer et al., 2004). Instead, similar recurrent feed-

forward–feedback processing mechanism has also been suggested in several visual object

recognition studies (Karimi-Rouzbahani, Ramezani, Woolgar, Rich, & Ghodrati, 2021;

Kietzmann et al., 2019; Rajaei, Mohsenzadeh, Ebrahimpour, & Khaligh-Razavi, 2019;

Von Seth, Nicholls, Tyler, & Clarke, 2023). We postulate that misspelled word reading

may provide circumstances under which the brain would choose to wait for additional

top-down constraints (Carreiras, Armstrong, Perea, & Frost, 2014). Future work needs to

evaluate theories of top-down processing (such as the interactive account for vOT’s func-

tion (Price & Devlin, 2011) and predictive coding theory for N400 component (Eddine

et al., 2024)) by investigating how regions interact to process and transform informa-

tion (Hauk, Jackson, & Rahimi, 2023).
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5 Conclusion

This study delineated the cortical dynamics during silent misspelled word reading. By

systematically manipulating the degrees of misspelling, we generated a stimulus spectrum

ranging from recognizable to unrecognizable misspelled words, confirmed by the behavioral

results. Left vOT, ST, and pC, typically associated with orthographic, lexico-semantic,

and phonological processing, respectively, were engaged in a late and sustained process

to disambiguate misspelled words from about 300 ms onwards. These results seem to

conflict with the general concept of rapid feedforward process of word recognition. The

remarkably late effect of misspelling in left vOT speaks to an anterior-to-posterior spread

of misspelling information. Such potential feedback and feedforward interactions need to

be validated by future studies.
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